
Non-causal Zero Phase FIR Filter With Examples

Cheng-Yang Tan

Accelerator Division/Tevatron

ABSTRACT: This is a quick (but not short) note to see how a non-causal zero

phase FIR filter can be implemented with an incoming continuous data stream.

Obviously, for non-causal filters to to work, the sampling rate of the incoming

stream must be higher than the outgoing stream because non-causal filters must

know not only the past, it must also know the future. I will describe three ways to

construct the non-causal zero phase FIR filter with examples. I will also show an

implementation in C++ which will use existing FIR filter functions to make the

non-causal zero-phase filters.

INTRODUCTION

It is well-known that causal filters cannot be constructed such that the signal at the

output of the filter is not phase shifted w.r.t. the input signal. There exists a class of filters

called zero-phase filters which phase shifts by 0 or π the input signal. This is the common

definition of “zero phase filters” which is not what I thought “zero-phase” means. Most of

the arguments and constructions in this note are found on the web and some text books

but since they are scattered around I am just collecting the information here. I will not go

through many detailed proofs although I will show some proofs to keep things straight. I

will assume throughout this paper that the filter is odd in length and symmetric. I will also

assume that there is a continuous input stream −→x that is sampled at a higher frequency

than the outgoing stream because non-causal filters must know not only the past but also

the future. Thus the output of the zero-phase filter must be connected to another filter,

like an averaging filter to down sample the output of the non-causal filter.

There are at least three ways to construct a non-causal filter HNC(z) given a causal

FIR filter HC(z). These three methods are discussed below, and I will show that only

methods 0 and 1 are suitable for feedback systems.

Method 0

This is the simplest and most obvious way to construct the the new non-causal filter

HNC(z). First, I can write the causal filter HC(z) as

HC(z) =
2N∑

k=0

akz
−k (1)

Then HNC(z) is constructed by symmetrizing the coefficients ak about k = 0 rather than

2

at k = N , i.e.

HNC(z) =
N∑

k=−N
aN−kz−k

≡
N∑

k=−N
bkz
−k

(2)

where bk = aN−k. HNC is clearly non-causal and it is symmetric about k = 0 because

b−k = bk. The symmetry is important because zero-phase comes from here. The proof is

trivial. In Fourier space, z → eiω

HNC(eiω) =
N∑

k=−N
bke
−ikω

= b0 +
N∑

k=1

bk

[
eikω + e−ikω

]

= b0 + 2
N∑

k=1

bk cos kω

(3)

Clearly, the phase of HNC(eiω) can be at 0 or π. As long as there are no abrupt phase

shifts in the passband of the filter, it can be used in a feedback loop.

Method 1

The second way, which is used by the MATLAB function filtfilt(), is to construct the

new non-causal filter HNC(z) from HC(z) by

HNC(z) = HC(1/z) ·HC(z) (4)

Clearly HC(1/z) is non-causal because if

HC(z) =
2N∑

k=0

akz
−k is causal

then HC(1/z) =
2N∑

k=0

akz
k is non-causal.

(5)

3

In Fourier space, z → eiω and thus

HNC(eiω) = HC(e−iω) ·HC(eiω)

= H∗C(eiω) ·HC(eiω)

= |HC(eiω)|2

(6)

where “∗” is the complex-conjugate operator. Clearly HNC is completely real and greater

than zero in Fourier space and so any signal going through HNC will have identically zero

phase shift. This filter is most useful in feedback loops because it does not introduce any

phase shift at all.

Method 2

The third way is which was described in ?? (textbook at 1002)

HNC(z) = HC(1/z) +HC(z) (7)

Now in Fourier space z → eiω and so

HNC(eiω) = 2× Re
[
HC(eiω)

]
(8)

Thus in Fourier space HNC is completely real and therefore, the phase shift is either zero

or π between the input and the output. Like method 0, this type of filter is certainly not

zero phase when I really want “zero phase” and is probably not useful in feedback loops

because of the sudden phase changes between 0 and π in its phase response.

Proof that HC(1/z) is equivalent to the

operations time reversal, HC and time reversal

I want to show that the filter HC(1/z) is equivalent to filtering with HC(z) of a time

reversing the input data and then time reversing one more time the filtered result. (In all

4

the webs sources, this is the algorithm which is described. However, it is actually not clear

to me at this time why doing it this way is more efficient than just doing HC(1/z) straight

up. I will, however, indulge the web authors and assume that this is the most efficient way

to do things.)

If the input sequence is −→x = {. . . , x(−1), x(0)
↑
, x(1), . . . , x(2N), . . .} and x(0)

↑
is the

zeroth term of the sequence, then the result yNC after going through HC(1/z) is simply

yNC(n) =
2N∑

k=0

akx(n+ k) (9)

Now, if I time-reverse x, i.e. −→x →←−x = {. . . , x(2N + 1), x(2N)
↑

, x(2N − 1), . . . , x(1), x(0),

x(−1), . . .} ≡ {. . . , x′(−1), x′(0)
↑
, x′(1), . . .} then the zeroth term of this sequence is x(2N)

↑
=

x′(0)
↑

. Passing this time reversed signal into HC(z) gives

yC(m) =
2N∑

k=0

akx
′(m− k)

= yNC(2N −m)

(10)

which is a time-reversed copy of yNC . Thus time reversing yC(m) will give me back

yNC(n).

5

EXAMPLES

In the following examples, I will suppose that the input data is over sampled and I

will process the data in blocks. I will assume that HC is odd in length and is symmetric.

It will become clear that these examples show the way of filtering image data and is not

efficient for filtering feedback loop input data that is infinitely long. A realistic implemen-

tation for doing non-causal zero phase filtering will be discussed in the section Realistic

Implementation.

For all these examples, the filter coefficients which I will use is

HC(z) = 1 + 2z−1 + z−2 (11)

Figure 1 This is the frequency response of HC and H∗C . It is clear
from the phase response that H∗C is non-causal.

6

Method 0

Using method 0, the filter HNC is

HNC(z) = z−1 + 2 + z (12)

The input stream of random numbers is −→x

−→x = {. . . ,−5, 3, 8,−7,−1,
block 0︷ ︸︸ ︷

−10,−8, 3, 2
↑
,−10,−6

︸ ︷︷ ︸
sub-block 0

,−9, ,−9,−7,−3,−9, 3,−6, 0,−10, . . .}

(13)

Block 0 is the block to data that needs to be stored. Sub-block 0 is the data that will

be processed and then sent to the next stage for down sampling. Note that the length of

block 0 is exactly the length of sub-block 0 plus (length of filter− 1) (the sub-block length

must be odd for an impulse response calculation which can be used to calculate the filter

coefficients. See section Realistic Implementation. For this example, I have chosen the

length of the sub-block to be 5) . Since the sub-block is odd in length, this means that the

block length must also be odd. Block 0 going through HC(z), gives

−→yc (−2) = (1×−10) + (2×−8) + (1× 3) = −23

−→yc (−1) = (1×−8) + (2× 3) + (1× 2) = 0

−→yc (0) = (1× 3) + (2× 2) + (1×−10) = −3

−→yc (1) = (1× 2) + (2×−10) + (1×−6) = −24

−→yc (2) = (1×−10) + (2×−6) + (1×−9) = −31

(14)

The result is −→yc = {−23, 0,−3
↑
,−24,−31}.

The next block to process is block 1

−→x = {. . . ,−5, 3, 8,−7,−1,−10,−8, 3, 2
↑
,−10,

block 1︷ ︸︸ ︷
−6,−9,−9,−7,−3,−9︸ ︷︷ ︸

sub-block 1

, 3,−6, 0,−10, . . .}

(15)

7

and the result of going through HNC is −→yc = {−33,−34,−26,−22,−18}.

Method 1

For this method I will use the filter HNC = HC(1/z) ·HC(z). HNC can be interpreted

as first taking the input signal −→x and sending into HC to get the result −→yc. Second , I

use the result from the previous section that HC(1/z) is equivalent to time reversing −→yc
to give ←−yc and sending it through HC again to get

←−
y′c and finally, time reversing one more

time to get the result −→y . (Whew!)

Again, I will use the same stream of random numbers −→x

−→x = {. . . ,−5, 3, 8,−7,
block 0︷ ︸︸ ︷

−1,−10,−8, 3, 2
↑
,−10,−6

︸ ︷︷ ︸
sub-block 0

,−9,−9,−7,−3,−9, 3,−6, 0,−10, . . .}

(16)

Block 0 going through HC(z), gives
−→yc (−2) = (1×−1) + (2×−10) + (1×−8) = −29

−→yc (−1) = (1×−10) + (2×−8) + (1× 3) = −23

−→yc (0) = (1×−8) + (2× 3) + (1× 2) = 0

...
...

...
...

...
...

...
...

−→yc (4) = (1×−9) + (2×−9) + (1×−6) = −33

(17)

Note that I did not bother calculating −→yc (−4) and −→yc (−3) because they will not be used.

The result −→yc = {−29,−23, 0
↑
,−3,−24,−31,−33} is time reversed to give

←−yc = {−33,−31,−24,−3, 0
↑
,−23,−29} (18)

Taking ←−yc and sending it through HC(z) one more time and not calculating ←−yc (−4) and

←−yc (−3) gives
←−
y′c = {−119,−82,−30

↑
,−26,−75} (19)

8

which has exactly the same length as sub-block 0. Time reversing one more time, gives

the result of sending sub-block 0 through the zero phase filter HNC(z)

−→
y′c = {−75,−26,−30

↑
,−82,−119} (20)

The entire procedure for processing block 0 is summarized in Table 1. I have also worked

out block 1

−→x = {. . . ,−5, 3, 8,−7,−1,−10,−8, 3, 2
↑
,−10,−6,

block 1︷ ︸︸ ︷
−9,−9,−7,−3,−9, 3,−6︸ ︷︷ ︸

sub-block 1

, 0,−10, . . .}

(21)

in Table 2.

Table 1. Processing Block 0 with Method 1

n −4 −3 −2 −1 0 1 2 3 4

−→x −1 −10 −8 3 2 −10 −6 −9 −9

−→yc * * −29 −23 0 −3 −24 −31 −33

←−yc −33 −31 −24 −3 0 −23 −29 * *

←−
y′c * * −119 −82 −30 −26 −75 * *

−→
y′c * * −75 −26 −30 −82 −119 * *

9

Table 2. Processing Block 1 with Method 1

n 3 4 5 6 7 8 9 10 11

−→x −9 −9 −7 −3 −9 3 −6 0 −10

−→yc * * −34 −26 −22 −18 −9 −9 −16

←−yc −16 −9 −9 −18 −22 −26 −34 * *

←−
y′c * * −43 −45 −67 −88 −108 * *

−→
y′c * * −108 −88 −67 −45 −43 * *

Method 2

In method 2, I process −→x once with HC(z) to get −→yc. Then I process −→x with HC(1/z)

using the time reversal, HC(z), time reversal method as before to get
−→
y′c. The output of

HNC(z) is the sum −→y = −→yc +
−→
y′c.

I start with the same data stream −→x and partition the stream into blocks like I did

before

−→x = {. . . ,−5, 3, 8,−7,
block 0︷ ︸︸ ︷

−1,−10,−8, 3, 2
↑
,−10,−6

︸ ︷︷ ︸
sub-block 0

,−9,−9,−7,−3,−9, 3,−6, 0,−10, . . .}

(22)

Block 0 going through HC(z) gives −→yc

−→yc = {−29,−23, 0
↑
,−3,−24} (23)

Next, to calculate
−→
y′c, I have to time reverse −→x

←−x = {. . . ,−9,−9,−6,−10, 2
↑
, 3,−8,−10,−1, . . .} (24)

10

Go through HC(z)
←−
y′c = {−33,−31,−24

↑
,−3, 0} (25)

Time reverse
←−
y′c

−→
y′c = {0,−3,−24

↑
,−31,−33} (26)

Finally, the result of going through HNC(z) is the sum

−→y = −→yc +
−→
y′c

= {−29,−26,−24
↑
,−34,−57}

(27)

The entire process shown above is summarized in Table 3. Processing of block 1 is shown

in Table 4.

Table 3. Processing Block 0 with Method 2

n −4 −3 −2 −1 0 1 2 3 4

−→x −1 −10 −8 3 2 −10 −6 −9 −9

−→yc * * −29 −23 0 −3 −24 * *

←−x −9 −9 −6 −10 2 3 −8 −10 −1

←−
y′c * * −33 −31 −24 −3 0 * *

−→
y′c * * 0 −3 −24 −31 −33 * *

−→y * * −29 −26 −24 −34 −57 * *

11

Table 4. Processing Block 1 with Method 2

n 3 4 5 6 7 8 9 10 11

−→x −9 −9 −7 −3 −9 3 −6 0 −10

−→yc * * −34 −26 −22 −18 −9 * *

←−x −10 0 −6 3 −9 −3 −7 −9 −9

←−
y′c * * −16 −9 −9 −18 −22 * *

−→
y′c * * −22 −18 −9 −9 −16 * *

−→y * * −56 −44 −31 −27 −25 * *

12

REALISTIC IMPLEMENTATION

The previous examples in section Examples illustrate the way how not to implement

zero-phase filtering in any realistic feedback loop signal processing setup. The recipe for a

realistic implementation of non-causal filtering is as follows:

(i) Calculate the causal filter coefficients of HC using any of the standard packages

available on the web.

(ii) If I cloose to calculate non-causal filter coefficients using the methods shown in

Examples then the sub-block size must be odd in length. The block length is

(sub-block length + filter length − 1) for method 0 and sub-block length + 2 ×
(filter length− 1) for methods 1 and 2. Otherwise I skip to (iiia).

(iii) The impulse response of HNC is calculated using the examples shown previously.

For example −→x = {0, 0, 0, 0, 1
↑
, 0, 0, 0, 0} is the input data block for methods 1 and

2. Method 0, of course, has the same coefficients as HC .

(iiia) Or more directly, HNC(z) is calculated using the formulas (4) for method 1 and

(7) for method 2. The coefficients ak become the filter coefficients of HNC .

(iv) Use the impulse response as the filter coefficients of an FIR filter which is used to

process the data blocks.

(v) Once I have the filter coefficients, the block size is no longer constrained to be odd.

An addition of a simple memory manipulation is all that is needed to existing FIR

filter functions to implement non-causal filtering.

So following the recipe, in step (i), I have calculated an 11 tap FIR low pass filter using

a Hamming window with a cut-off frequency at π/8. Its coefficients are shown in Table 5

and its frequency response and impulse response are shown in Figures 2 and 3.

13

Figure 2 This is the frequency response of the 11 point FIR low
pass filter.

Table 5. 11 tap FIR low pass filter

k ak k ak

0 −0.0038713 10 −.0038713
1 0.0000000 9 0.0000000
2 0.0320878 8 0.320878
3 0.1167086 7 0.1167086
4 0.2207012 6 0.2207012
5 0.2687474

In step (ii), I have chosen the length of the sub-block to be 13, and so with this 11 tap

FIR filter, the length of each block is 13+(11−1) = 23 for method 0 and 13+2×(11−1) = 33

for methods 1 and 2. Step (iii) in the recipe is continued in the following subsections.

14

Figure 3 The impulse response of the 11 point FIR filter. Notice
that the delay between the input and the output is (11 − 2)/2 = 5
samples as expected. The sampling time is Ts.

Method 0 in Step (iii) or (iiia)

If I use step (iii) for method 0, then the impulse response of HNC is calculated with

the procedure shown in the examples with −→x = {. . . , 0, 1
↑
, 0 . . .} where the length of −→x is

23 and the “1” is the 12’th element (the first element is numbered 1) of −→x . Or if I use

step (iiia), then the coefficients are just renumberd like in (2).

The frequency response is shown in Figure 4. The impulse response is shown in Figure 5

and the filter coefficients of HNC are shown in Table 6. Note that the coefficients are the

same as those in Table 5 but with k different.

15

Figure 4 This is the frequency response HNC of the filter con-
structed using method 0. The phase has discontinuities outside the
passband. The magnitude response of the 11 point FIR filter HC is
identical to the magnitude response HNC .

Table 6. Method 0 filter coefficients

k ak k ak

−5 −0.0038713 5 −.0038713
−4 0.0000000 4 0.0000000
−3 0.0320878 3 0.320878
−2 0.1167086 2 0.1167086
−1 0.2207012 1 0.2207012
0 0.2687474

16

Figure 5 The impulse response of the non-causal filter using method 0.
Notice that the response is symmetric about zero and there is zero
delay between the input and the output.

Method 1 in Step (iii) and (iiia)

If I chosse step (iii) for method 1, then the impulse response of HNC is calculated

with the procedure shown in the examples with −→x = {. . . , 0, 1
↑
, 0 . . .} where the length of

−→x is 33 and the “1” is the 17’th element (the first element is numbered 1) of −→x . Or If I

choose step (iiia), I just multiply out HC(1/z) ·HC(z) in Mathematica and get the same

solution as step (iii).

The frequency response of this filter is shown in Figure 6. The impulse response is

shown in Figure 7 and the filter coefficients of HNC are shown in Table 7. Notice that the

number of coefficients has increased from 11 (which is the length of HC) to 21.

17

Table 7. Method 1 filter coefficients

k ak k ak

−10 1.4987× 10−5 10 1.4987× 10−5

−9 0.0000000 9 0.0000000
−8 −0.000248443 8 −0.000248443
−7 −0.00090363 7 −0.00090363
−6 −0.000679173 6 −0.000679173
−5 0.00540906 5 0.00540906
−4 0.0260758 4 0.0260758
−3 0.0678589 3 0.0678589
−2 0.125354 2 0.125354
−1 0.177631 1 0.177631
0 0.198974

Figure 6 This is the frequency response HNC of the filter con-
structed using method 1. Clearly the phase is zero in the entire band-
width of the filter. The original magnitude response of the 11 point
FIR filter HC is also plotted here for comparison.

18

Figure 7 The impulse response of the non-causal filter using method 1.
Notice that the response is symmetric about zero and there is zero
delay between the input and the output.

Method 2 in Step (iii) and (iiia)

If I choose step (iii) for method 2, then the impulse response of HNC is calculated

with the procedure shown in the examples with −→x = {. . . , 0, 1
↑
, 0 . . .} where the length of

−→x is 33 and the “1” is the 17’th element (the first element is numbered 1) of −→x . Or If I

choose step (iiia), I just add HC(1/z) +HC(z) in Mathematica and get the same solution

as step (iii).

The frequency response of this filter is shown in Figure 8. Looking at the frequency

response, it becomes clear that HNC is drastically different from HC and so this method

is probably not the best way to implement zero-phase filters. For completeness, I have

calculated the impulse response which is shown in Figure 9 and the its filter coefficients in

Table 8.

19

Figure 8 This is the frequency response HNC of the filter con-
structed using method 2. Notice the increased number of notches in
the magnitude response as well as the sudden changes in the phase
response between 0 and 180◦ of HNC .

Table 8. Method 2 filter coefficients

k ak k ak

−10 −0.0038713 10 −0.0038713
−9 0.0000000 9 0.0000000
−8 0.0320878 8 0.0320878
−7 0.116709 7 0.116709
−6 0.220701 6 0.220701
−5 0.268747 5 0.268747
−4 0.220701 4 0.220701
−3 0.116709 3 0.116709
−2 0.0320878 2 0.0320878
−1 0.0000000 1 0.0000000
0 −0.0077426

20

Figure 9 The impulse response of the non-causal filter using method 2.
Although the respose is symmetric about zero, its response at zero is
essentially zero.

Step (iv)

For step (iv), I will just take one set of filter coefficients from Table 6, 7 or 8 and use

them in a C++ programme. See Listing 1.

Listing 1 C++ Partial Source Listing

#define SUBBLOCK SIZE 22 // for method 0, and 12 for methods 1 and 2

void fir(double * const x, const int Nx,

const double * const h, const int Nh,

double* r)

{
/*

x: input data

Nx: length of input data

h: filter coefficients

Nh: length of the filter

21

r: the result after filtering

*/

. . .

}
int main()

{
const double h[] = {. . .}; // the filter coefficients

const int FILTER LEN = sizeof(h)/sizeof(double);

const int HALF FILTER LEN = (FILTER LEN-1)/2;

const int BLOCK SIZE = SUBBLOCK SIZE + (FILTER LEN-1);

double x[BLOCK SIZE]; // input data

double r[BLOCK SIZE]; // result

int i = HALF FILTER LEN;

memset(x, 0, sizeof(double)*BLOCK SIZE); // init x

while(cin >> x[i]){
if(++i >= BLOCK SIZE){

// perform FIR filtering

fir(x, BLOCK SIZE, h, FILTER LEN, r);

// make result non-causal by shifting result to the left

// so that only array values from 0 to SUBBLOCK SIZE-1

// are valid

memmove(r, r+FILTER LEN-1, SUBBLOCK SIZE*sizeof(double));

// show the filtered result

for(int j=0; j < SUBBLOCK SIZE; j++){
cout << r[j] << "\n";

}
// copy the old x values at the end to the beginning of x

memmove(x, x+(BLOCK SIZE-FILTER LEN+1),

(FILTER LEN-1)*sizeof(double));

// reset counter

i=FILTER LEN-1;

}
}

22

The filter coefficents go into h[]. The data is read from stdin into x[] starting from

array position FILTER LEN-1. The number of data points read in is (BLOCK SIZE - (FIL-

TER LEN -1)) (after the first read). Previous data is left in x[0,. . .,FILTER LEN-2] so that

the final length of x[] is BLOCK SIZE. A call to an existing FIR filter function fir() is

used to process x[]. The result r[] is causal and to make it non-causal, the data points in

r[] must be shifted to the left by (FILTER LEN-1). Once this is done, only elements r[0]

to r[SUBBLOCK SIZE-1] contain valid filtered data. The old data from x[BLOCK SIZE-

FILTER LEN-1] to x[BLOCK SIZE-1] are copied to the beginning of x[]. The new set of

input data is stuffed into x[] starting from array position FILTER LEN-1.

Step (v)

In Step (v), I will demonstrate non-causal filtering with the simple C++ programme

shown in Listing 1. I will filter the following incoming stream of data which I choose to be

−→x (n) = cos
(π

16
n
)

+
1
10

sin
(9π

10
n
)

where n ∈ N ∪ {0} (28)

The sub-block size I have chosen for method 0 is 22 and so the block size is 22+(11−1) = 32.

For methods 1 and 2 the sub-block size is 12, so that the block size is 12 + (21− 1) = 32.

First the result of filtering with HC using the coefficients from Table 5 is shown in

Figure 10. It is clear that the filtered signal is delayed w.r.t. noisy input signal.

The result of filtering with the non-causal filter HNC which comes from method 0

using the coefficients from Table 6 is shown in Figure 12. There is no delay between the

input and the output. Note that the output is simply the blue signal of Figure 10 shifted

to the left by 5 samples.

23

Figure 10 The noisy signal (red) is input into the FIR filter with co-
efficients from Table 5. The output (blue) is clearly delayed w.r.t. noisy
input signal.

Figures 12 and 13 show the result of filtering the same noisy input with the filter

coefficients from Tables 7 and 8 respectively. Clearly there is no delay between the input

and the output. Note that there is a transient right at the start in all the methods, but

since the input signal is continuously coming in so this should not be a problem.

24

Figure 11 The noisy signal (red) is filtered with the non-causal
filter using method 0 with coefficients from Table 6. There is no delay
between the input and the output.

Figure 12 The noisy signal (red) is filtered with the non-causal
filter using method 1 with coefficients from Table 7. Again, there is
no delay between the input and the output.

25

Figure 13 The noisy signal (red) is filtered with the non-causal
filter using method 2 with coefficients from Table 8. Again, there is
no delay between the input and the output.

CONCLUSION

I have shown three methods for calculating the non-causal zero phase filter. The

C++ code which I use is one pssible way of implementing this filter using existing FIR

filter functions. There is a way to make the code go a little faster by applying the filter

coefficients forwards in time rather than backwards which I have used. Whether going

forwards or backwards in time, the data points in the data block x[] must still be shifted

to keep the block coherent for the next set of data points.

26

